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ABSTRACT 

The increasing rise of micromachining processes, especially the micro-milling is motivated 

by the variety of parts of complex configuration that can be obtained, for medical 

(implants) and aeronautical (components) applications. This study is focused on the 

optimization of micro milling operation to achieve maximum productivity and the 

minimum surface roughness (Ra), finally with the results of the optimization process was 

created an intelligent system of decision making, which will improve the performance of 

the operation. Cutting speed, feed rate and axial depth of cut were the cutting parameters 

taken into account. Firstly, the cutting force was modeled by using a multiple linear 

regression and an adaptive neuro-fuzzy inference system (ANFIS); the proposed models 

correlate the cutting force with the cutting parameters mentioned above, also an ANFIS 

technique was used for modeling the surface roughness with the same input variables. 

Outcomes of the cutting force modeling showed that the neuro-fuzzy model has higher 

correlation than the corresponding regression-based-model. The optimization process is 

carried out by applying a modified multiobjective cross-entropy (MOCE+) method. Finally, 

the obtained outcomes were arranged in graphical form (Pareto’s front) and analyzed to 

make the proper decision for different process preferences. 

Keywords: Multiobjective optimization; micromilling; cross-entropy 

Introduction 

For determining  optimum process parameters of any micro-machining operations is 

usually a difficult work where the following aspects are required: knowledge of 

manufacturing process, empirical equations to develop realistic constraints, specification of 

machine tool capabilities, development of effective optimization criteria, and knowledge of 

mathematical and numerical optimization techniques(Pawar y Venkata Rao 2012).  

However, very few studies concerning optimization of machining parameters in micro-

milling were reported in the literature. Periyanan et al (Periyanan et al., 2011) optimized 

material removal rate (MRR) considering the spindle speed, feed rate and depth of cut as 

the cutting parameters in micro-end milling using Taguchi method, also Kuram and Ozcelik 

(Kuram y Ozcelik, 2015) optimized tool wear, surface roughness and cutting forces in 

micro-milling operations of Ti6Al4V titanium alloy and Inconel 718 workpiece materials 

by employing Taguchi’s signal-to-noise ratio. The surface roughness in micro milling of 

tungsten-cooper alloys was optimized by Beruvides et al.(Beruvides et al., 2016) by 

applying a multiobjective genetic algorithm technique. The response surface methodology 

was employed by Natarajan et al.(Natarajan et al., 2011) for maximizing material removal 
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rate and minimize surface roughness in micro-milling of aluminum material, also Saedon et 

al.(Saedon et al., 2012) used the same methodology in the optimization of tool life in micro 

milling AISI D2 (~62HRC) hardened steel. The effects of  cutting speed, feed rate and 

depth of cut for higher MRR in micro milling of  Al-6082 were investigated using ANOVA 

methodology by Kumar et al.(Kumar et al., 2014). Another interesting method is presented 

by Surmann and Krebs (Surmann y Krebs, 2012) which is based on the geometric analysis 

of the various engagement conditions of the cutting edge and they optimized tool 

inclinations in a three- and five-axis micro milling processes. 

An issue with multi-objective problems is that a complete ordering is not uniquely defined 

and instead of a single optimal solution there is a set of optimal solutions(Giagkiozis y 

Fleming, 2015). The interaction among different objectives gives rise to a set of 

compromised solutions, largely known as the trade-off, non-dominated, non-inferior or 

Pareto-optimal solutions. The consideration of many objectives in the design or planning 

stages provides three major improvements to the procedure that directly supports the 

decision-making process (Cohon et al., 1988):  

 A wider range of alternatives is usually identified when a multiobjective 

methodology is employed.  

 Consideration of multiple objectives promotes more appropriate roles for the 

participants in the planning and decision-making processes, i.e. “analyst” or 

“modeler”– who generates alternative solutions, and “decision maker” - who 

uses the solutions generated by the analyst to make informed decisions.  

 Models of a problem will be more realistic if many objectives are 

considered. 

In  this  paper  a  titanium alloy (Ti6Al4V) micro milling  process  is  modeled (i.e., a 

regression model and a neuro-adaptive fuzzy inference system)  and  optimized, 

considering  two contradictory objectives:  productivity (inverse of material removal rate) 

and  surface roughness. The a posteriori approach is used and a multiobjective cross-

entropy method is employed to find the Pareto-optimal solutions.  The main contributions 

of this research are twofold: firstly, it applies the cross-entropy method for optimizing the 

micro milling process; secondly, this model-based cutting parameter optimization allows 

implementing an intelligent system of decision making. 

The investigation is organized in five sections. After the introduction, the second section 

describes where the micro milling experiments were carried out, as well as, the tool, 

experimental design and measurement equipment used in the process. The third section 

explains the model fitting while the fourth one shows the formalization and execution of the 

optimization. Finally conclusions and future work are outlined in the last section. 
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Experimental setup  

The grooves cutting experiments by micro milling operation were carried out on a KERN 

Evo three-axis machining center (see Fig. 1a) with a maximum spindle speed of 50 000 

rpm. The cutting forces in the feed (X), transverse (Y) and axial (Z) directions were 

measured during the experiments using the piezoelectric dynamometer Kistler Minidyn 

9256 (see Fig. 1c); its mechanical parameters such as, the measuring range (Fx, Fy, Fz) 

from -250 N to 250 N, cross talk: ≤ ± 2 and natural frequencies: fn(x)≈4.0 kHz, 

fn(y)≈4.8kHz and fn(z)≈4.6kHz were the best available and suits perfectly for the 

measurement of cutting forces in micro milling operation. The sensitivity of the 

dynamometer is 26 pC/N the X- and Y- directions and 13 pC/N in the Z-direction.  

The data signals were fed into a NI PXI 6251 National Instruments data acquisition card 

(see Fig. 1e), with a sampling frequency of 50 kHz, and were processed in a National 

Instruments high-performance PXI-8187 embedded controller (see Fig. 1e). Also a Form 

Talysurf PGI was used for the surface roughness measurement tests. This equipment, 

specifically developed for the optics industry, operates with nanometric precision. 

 

Figure 1. Equipment used in the experiments 

The carbide milling cutter used in the experiments has two flute cutting edge and 30
o
 helix 

angle. The cutting conditions are listed below in Table 1. 
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A 0.5 mm-diameter mill (see Fig. 1 b) was used in the experimental study. For the 

workpiece material´s, three independent variables (cutting speed, V; feed rate, fZ and axial 

depth of cut, aP) were considered.  

In order to obtain as much information as possible from the experimental study, a full-

factorial design of experiments was selected. Three levels were chosen for the cutting speed 

while four levels, for the feed rate and the axial depth of cut (Table 1). Three replicates 

were carried out for each experimental point. 

Table 1. Levels in the experimental design 

Experimental factors Experimental levels 

Cutting speed, V [m/min] 32 52 72 

Feed rate, fz [m/tooth] 5 10 15 20 

Axial depth of cut, aP [m] 13 20 27 34 

The components of the cutting forces were measured with a sampling frequency, 

fS = 50 kHz. The resultant cutting force: 

 2 2 2

C x y zF F F F   ; (1) 

was determined for each measured point. Then, the mean value of the force signal, 

corresponding to the cutting action of one tooth, was determined by superposing and 

averages all the samples (Fig. 2). 

 

Figure 2. Cutting force signal processing 

After completing the signal processing, 144 values were obtained for resultant cutting 

force, matching with the three replicates of the 48 experimental points. Also, 144 surface 

roughness values after the corresponding measurements. 
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Modelling 

Regression-based modelling 

For establishing the mathematical relationship between the studied variables (cutting force 

and surface roughness) with the experimental factor (cutting speed, feed and axial depth of 

cut), the first choice is the statistical regression (Multiple Linear Regression, MLR) because 

it is simple and have a solid mathematical foundation. 

By applying the multiple regression technique, the following models were obtained for the 

resultant cutting force and the surface roughness:  

 

0.5184 0.4785

c  p z0.1145F a f= ;  (2) 

 

1.77 0.21 0.17

z p

a 0.29

c

e f a
R

v

 
  ; (3) 

with a correlation coefficient, R
2
, of 0.82 and 0.86 respectively, which means that the first 

fitted model explains only an 82% of the variability of the dependent variable; the second 

fitted model explains more than 85% of the variability in the dependent variable. The 

ANOVA (Table 2 and Table 3 respectively) show that in Eq. 1 there is statistically 

significant relationship between the resultant cutting force and the two included 

independent variables and also exist the same relationship in the surface roughness 

regression at a confidence level of 95%. The cutting velocity was removed from the model 

of the cutting force (Eq. 1) because the t-Student test showed that this term was not 

significant at the 90% or higher confidence level. 

The Standard Error of the Estimations (SEE) and the average value of the residual 

described by the Mean Absolute Error (MAE) were other parameters calculated associated 

with the quality of the regression model; a SEE of 0.8546 and a MAE of 0.6123. The 

principal reason to calculate these errors (SSE, MAE) is to give the maximum possible 

information on the accuracy of the obtained model. 

Table 2.  ANOVA for the statistical model of the cutting force  

Source Sum of squares Degrees of freedom Mean square F-ratio p-value 

Model 4.646 2 2.323 100 0,000 

Residual 1.045 141 0.023 

  Total 5.691 143 

   

Table 3.  ANOVA for the statistical model of the surface roughness  

Source Sum of squares Degrees of freedom Mean square F-ratio p-value 

Model 3.653 3 1.218 304.7 0,000 
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Residual 0.560 140 0.004 

  Total 4.213 143 

   

ANFIS-based modeling 

One of the most recently used neuro-fuzzy approach is the adaptive neuro-fuzzy inference 

system (ANFIS), which is a multilayer feed-forward network using learning algorithms and 

fuzzy reasoning to map the relationship between the input and output variables. This 

technique was selected due to its computational simplicity and suitability for real-time 

applications [11]. ANFIS  implements  the  Takagi–Sugeno model  for  the  structure  of  

the  fuzzy  system  if-then  rules.  The neuro-fuzzy model’s architecture has five layers, as 

shown in Fig. 3. 

 

Figure 3. Architecture of ANFIS-based modeling 

This second model based on ANFIS was used for estimating the cutting force and the 

surface roughness too. The neuro-adaptive fuzzy inference system was created by using the 

MATLAB Fuzzy Logic Toolbox (version 2.2.17). 

The cutting force fuzzy model obtained has an r-squared (R
2
) of 0.92, also were calculated 

the SEE (0.7243) and the MAE (0.4567), the cutting speed was removed of this model 

because the t-Student test showed that this term was not significant at the 95% confidence 

level. The ANFIS model of the Ra has a correlation coefficient, of 0.96, the standard error 

of the estimations calculated is 0.0091 and the mean absolute error of the model is 0.0184. 

This outcome reflects that an ANFIS has unlimited approximation power for matching any 

nonlinear function arbitrarily well on a compact set [12]. 

Optimization 

Problem definition 

The purpose for applying the optimization procedure is to obtain the best set of cutting 

parameters in the micro-milling process. The decision variables involved in the 
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optimization process were the same experimental factors: cutting speed, V; feed rate, fZ and 

axial depth of cut, aP. 

The optimizations targets are the unit machining time (inverse of the material removal rate, 

MRR), T0 [min/mm
3
] and the surface roughness, Ra [mm], which are given by the 

expressions: 

 
0

z  p  e

1 1
T

MRR f a n a z
= =

× × × ×
; (4)

where n [rev/min] is the spindle speed,  ae [mm] is the radial depth of cut and z is the teeth 

number of the mill, in all cases, a mill with two-toothed cutting tool was used; and: 

 z p( , ,  )a ANFIS VR f a ;  (5)

 c z  p( , )ANFISF ψ f a= ;  (6) 

where ψ is the neuro-adaptive fuzzy inference system function obtained in the previous 

section. Both fitness functions must be minimized.  

Besides those indicating the intervals of the decision variables (Eqs. 8a, 8b and 8c), the 

considered constraints include the maximum stress caused by the cutting force, which can 

be expresses as: 

 

2 2

C U
eq 3( /16)

L D

D

F 







  ; (7) 

where eq is the equivalent stress in the more loaded section; L, the flute length of the 

cutting tool; D, the cutting tool diameter; U, the ultimate strength of the cutting tool 

material; and , the security coefficient. 

For the used tool, L = 1.5 mm and D = 0.5 mm. The tool material was tungsten carbide with 

U = 700 MPa. Due to the dynamics characteristics of the micromilling process, a high 

value was selected for the security factor,  = 5.0. 

 
Cross-entropy-based optimization 

The algorithm called MOCE+ (modified Multi-Objective Cross-Entropy) is focused on 

solving a multi-objective optimization problem (see Fig. 4). It starts by creating an empty 

elite population Q*= {ø}; then a loop of N iterations is performed, where the values of the 

means and standard deviations (µi, σi) for each decision variable is computed. Then a nested 

loop takes place until it reaches some stopping conditions, this loop starts by creating the 

working population (which can be done in two different ways). On the other hand, the 

working population is created from de elite population. In the next step the elite population 

is increased by adding all the solutions with a lower Pareto dominance than some threshold 

value, also the means and standard deviation of each variable are updated from de values of 

the elite population λt. Finally, three stopping conditions are evaluated: the convergence 
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limit (εmax); the maximum evaluation number (Smax) and the maximum elite population size 

(Zmax). 

 

Figure 4. Pseudo code of the MOCE+ 

The decision variables mentioned above were considered with their respective experimental 

intervals: 

 32 m/min ≤ V ≤ 72 m/min; (8a) 

 5 µm/tooth ≤ fZ ≤ 20 µm/tooth; (8b) 

  13 µm ≤ aP ≤ 34 µm; (8c) 

The algorithm was implemented with a maximum convergence limit of 0.001, and a 

maximum number of epochs equal to 100. The size of the elitist population was set at 15 

and the maximum evaluation number of 1000 was applied.  

With the optimization process finished the non-dominated solutions can be graphically 

represented in the so called Pareto front and in the Pareto set (see Fig. 5). The most 

convenient cutting parameters can be selected depending on the specific conditions of the 

productions. While the point 1 represents the highest surface roughness and the lowest unit 

machining time; point 2 includes the highest unit machining time and the lowest surface 

roughness. All the other points are intermediate combinations. 
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Figure 5. Unit machining time vs. surface roughness multiobjective optimization 

Conclusions 

The a posteriori multiobjective optimization has shown to be a suitable option on selecting 

the most convenient cutting parameters in micromilling processes. Furthermore this 

technique offers a greater piece of information and it allows carrying out a more flexible 

decision-making process. 

In comparing the obtained neuro-adaptive fuzzy inference system with the statistical 

multiple regression, it has been shown that the fuzzy model allows obtaining more accurate 

predictions for the cutting force. 

The modified cross-entropy method used was capable to obtain a set of solution, which are 

uniformly distributed, in order to arrange the Pareto’s front, at a reasonably low 

computational cost. By means of Pareto frontier graphics, several different situations may 

be considered, facilitating the choice of right parameters for any condition. 
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